Definitions

<table>
<thead>
<tr>
<th></th>
<th>Pediatrics</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal BP</td>
<td>SBP <120, DBP <80</td>
<td>SBP <120, DBP <80</td>
</tr>
<tr>
<td>Pre-hypertension</td>
<td>SBP 120-139, DBP 80-89</td>
<td>SBP 120-139, DBP 80-89</td>
</tr>
<tr>
<td>Stage 1 Hypertension</td>
<td>SBP >140, DBP >90</td>
<td>SBP >140, DBP >90</td>
</tr>
<tr>
<td>Stage 2 Hypertension</td>
<td>SBP >160, DBP >100</td>
<td>SBP >160, DBP >100</td>
</tr>
</tbody>
</table>

Classifications based off of the average of 2 or more readings taken at each of 2 or more visits following initial screening.

Portman 2005, Chobanian 2003

Estimated Incidence of Pediatric Hypertension (HTN)

<table>
<thead>
<tr>
<th>Time</th>
<th>HTN</th>
<th>Pre-HTN</th>
<th>HTN in Overweight Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>mid 1970s</td>
<td>1.5%</td>
<td>4.0%</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>18.7%</td>
<td>4.0%</td>
<td></td>
</tr>
</tbody>
</table>

Brady 2009, Flynn 2010

Methods of BP Evaluation

- **Auscultatory measurements:** sphygmomanometer and stethoscope
 - Sits for BP table
 - Patient should sit quietly for 5 minutes with his or her back supported, feet on the floor and right arm supported at heart level
 - Cuff size should be at least 2/3 distance from acromion to olecranon
- **Oscillometric (Dinamap)** measurements:
 - Automatic device that measures mean arterial BP and then calculates systolic and diastolic values
 - Measurements generally comparable to auscultatory
 - Oscillometric devices are convenient, have minimal observer error
- **Ambulatory BP monitoring (ABPM):** portable device worn by the patient to record BP over a specific period (usually 24 hours)
 - Enables calculation of:
 - Mean BP during the day, night and over 24 hours
 - Degree of nocturnal dipping
 - BP load (% readings >95%)
 - Useful to evaluate white-coat and masked HTN
 - Correlates better than office BP with CV complications (e.g. LVH)

NHBPEP 2004

Causes of Pediatric Hypertension

- **Primary/Essential Hypertension**
 - Most common form of HTN and is a diagnosis of exclusion
 - Common at all ages
 - More frequent in:
 - African American children
 - Family history of HTN
 - Overweight or obese

- **Secondary Hypertension**
 - For all age groups, renal parenchymal or renovascular causes together account for ~60-90% of secondary causes
 - More frequent in:
 - Younger children
 - Children with a greater degree of BP increase at the time of initial diagnosis

Portman 2005, Brady 2009
Differential Diagnosis of Secondary Causes of HTN

- Renal Parenchymal 80%
- Renovascular 10%
- Endocrine 5%
- Coarctation of Aorta 2%
- Malignancy 3%
- Miscellaneous 5%

Common Causes of HTN by Age

<table>
<thead>
<tr>
<th></th>
<th>Infants</th>
<th>Children</th>
<th>Adolescents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombosis of renal artery or vein</td>
<td>Renal artery stenosis</td>
<td>Renal parenchymal disease</td>
<td>Essential HTN</td>
</tr>
<tr>
<td>Congenital renal anomalies</td>
<td>Renal parenchymal disease</td>
<td>Renovascular abnormalities</td>
<td>Renal parenchymal disease</td>
</tr>
<tr>
<td>Coarctation of Aorta</td>
<td>Wilms tumor</td>
<td>Endocrine causes</td>
<td>Endocrine causes</td>
</tr>
<tr>
<td>Bronchopulmonary dysplasia</td>
<td>Neuroblastoma</td>
<td>Coarctation of aorta</td>
<td>Essential HTN</td>
</tr>
</tbody>
</table>

Clinical and Laboratory Assessment of Children with HTN

- Important History Elements:
 - Symptoms suggestive of endocrine etiology (weight loss, sweating, flushing etc.)
 - History of prematurity and/or placement of umbilical artery/vein catheter; neonatal course; birth weight (all hypothesized to predict HTN)
 - History of UTI
 - History of Obstructive Sleep Apnea
 - Medications including steroids, decongestant/cold prep, OCP, NSAIDs, stimulants, β-adrenergic agonists, EPO, cyclosporine/tacrolimus, tricyclic anti-depressants, recent discontinuation of antihypertensive
 - Nutritional Supplements
 - Family history of HTN, early cardiovascular or cerebrovascular events, ESRD
 - Diet (caffeine, salt intake)
 - Smoking/drinking/illicit drugs
 - Physical Activity

- Important Physical Exam Elements
 - Four extremity pulses and BP
 - Moon facies, truncal obesity, buffalo hump
 - Retinopathy
 - Thyromegaly
 - Skin lesions (café-au-lait spots, neurofibromas, adenoma sebaceum, striae, hirsutism, butterfly rash, purpura)
 - Evidence of CHF
 - Abdominal mass, abdominal bruits
 - Edema

- Laboratory Evaluation:
 - Specific tests may vary by clinic location and patient population
 - To rule out renal disease and chronic pyelonephritis:
 - Basic metabolic panel (electrolytes, BUN, HCO3, creatinine)
 - Urinalysis
 - Urine Culture
 - CBC to rule out anemia which could be consistent with CKD
 - Fasting lipids and glucose
 - Thyroid function tests
 - Plasma renin activity: very young with Stage 1 and children with Stage 2
 - Imaging:
 - Renal ultrason with Doppler examination of the renal vasculature
 - Echocardiography including measurement of LVMH
 - Renal arteriography: severe HTN or failure to control BP with one drug
 - Other Tests:
 - Retinal Exam: severe cases
 - Assessment of catecholamines: United States NO versus Europe YES

Clinical and Laboratory Assessment of Children with HTN

- Brady 2009
- Rodríguez-Cruz 2011
Yield of Diagnostic Testing for Mild-to-Moderate HTN in children

<table>
<thead>
<tr>
<th>Test</th>
<th>% of test w/Sig Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol > 170</td>
<td></td>
</tr>
<tr>
<td>ABPM* DBP>95%</td>
<td></td>
</tr>
<tr>
<td>Cholesterol > 200</td>
<td></td>
</tr>
<tr>
<td>ECHO</td>
<td></td>
</tr>
<tr>
<td>Plasma Renin Activity</td>
<td></td>
</tr>
<tr>
<td>Renal Sonography</td>
<td></td>
</tr>
<tr>
<td>Urinalysis</td>
<td></td>
</tr>
<tr>
<td>Serum Electrolytes</td>
<td></td>
</tr>
<tr>
<td>Spot Urine Catecholamines</td>
<td></td>
</tr>
<tr>
<td>Thyroid Function Test</td>
<td></td>
</tr>
<tr>
<td>BUN/creatinine</td>
<td></td>
</tr>
</tbody>
</table>

*ABPM = Ambulatory BP Monitoring

Wiesen 2008, Baracco 2012

Making the Differential Diagnosis

General Therapeutic Recommendations for Pediatric HTN

- All healthy children 3 years of age and children younger than 3 with certain comorbid conditions (e.g. prematurity, low birth weight, kidney disease, congenital heart disease) should have their BP measured at all physician visits
- If either SBP or DBP is elevated (≥90th percentile or SBP ≥120mmHg or DBP ≥80mmHg if these values are lower than the 90th percentile), the BP should be measured 2 additional times on 2 separate visits
- ABPM can expedite determination of BP status

Portman 2005

Practice Guidelines for Pediatric BP Monitoring

- All healthy children 33 years of age and children younger than 3 with certain comorbid conditions (e.g. prematurity, low birth weight, kidney disease, congenital heart disease) should have their BP measured at all physician visits
- If either SBP or DBP is elevated (≥90th percentile or SBP ≥120mmHg or DBP ≥80mmHg if these values are lower than the 90th percentile), the BP should be measured 2 additional times on 2 separate visits
- ABPM can expedite determination of BP status

Brady 2009

Non-pharmacological Interventions

- Suggested for all patients with prehypertension and hypertension
- Most patients with pediatric primary HTN should have a trial of non-pharmacologic management prior to starting drug treatment
- Loss of 10-15 lbs (4-7 kg) is sufficient to achieve a meaningful reduction in BP
- Physical activity with increased HR for 30-40 minutes, 3-4x/wk can lead to a demonstrable drop in BP

Brady 2009, Trachtman 2011

Pharmacological Intervention: Who Should Get Drugs?

- The 2004 NHBPEP guidelines indicate pharmacological therapy in children with one or more of the following conditions:
 - Symptomatic HTN (e.g. headaches, seizures, changes in mental status, focal neurological complaints, visual disturbances, CV complaints)
 - Stage 2 HTN
 - Stage 1 HTN (without any evidence of target-organ damage) that persists despite a trial of 4-6 months of non-pharmacologic therapy
 - Hypertensive target-organ damage, most often LVH
 - Stage 1 HTN with diabetes mellitus or other CVD risk factors such as dyslipidemia
 - Stage 1 HTN with family history of premature CVD
 - Prehypertension in presence of comorbid conditions, such as chronic kidney disease or diabetes mellitus

NHBPEP 2004
Stage 2 Acute HTN Crisis

Treatment Principles

- Blood pressure above the 99th percentile or more than 4 SDs above the mean is considered severe, however any BP in the presence of neurological symptoms is an acute emergency and requires urgent attention.
- Target of treatment is not to normalize the BP but to lower the mean arterial pressure by 20% so that a regular regimen can be started.
- Children are less likely to have atherosclerosis and therefore can tolerate sudden drops in BP without the risk of vital organ ischemia, MI or stroke.

Stage 1 Chronic HTN

Treatment Principles

- Choice of medication should be guided by underlying condition and the presence of other comorbidities.
- Patients with HTN and migraine headaches should receive β-blockers or CCBs, while children with diabetes and HTN should receive ACEI or angiotensin II receptor blockers (ARBs).
- Because of their metabolic effects, such as lowering TGF-β and Angiotensin II, ACEI and ARBs are indicated for patients with end-organ damage such as cardiac hypertrophy.
- Prescribe drugs that do not cause adverse effects on QoL in order to prevent non-adherence to drug regimen.
- It is advisable to use the fewest of agents possible and to prescribe once-daily dosing regimens.

Stage 1 Chronic Primary HTN

Pharmacologic Therapy

- Drug therapy is warranted if non-pharmacologic options fail to be effective or if the child is symptomatic, has other cardiovascular (CV) risk factors, family history of premature CVD, diabetes mellitus, or target-organ damage.
- Diuretics alone will work in 50% of pediatric patients with HTN while additional drugs will be needed to control the other half.

Stage 1 Chronic Secondary HTN

Pharmacologic Therapy

- All patients with secondary HTN should be started on antihypertensive medication.
- The underlying cause of HTN should be treated if possible.
- Child with HTN caused by renal disease should be prescribed drugs that block the synthesis/action of angiotensin II and aldosterone due to their renoprotective effects. These include:
 - ACEI, e.g., enalapril, lisinopril, ramipril and trandolapril.
 - Note: Patients may experience a marked decline in kidney function when they start ACEI.
 - ARBs, e.g., losartan, valsartan, irbesartan.
 - Recently developed renin inhibitors, aliskiren.
 - Aldosterone antagonists, e.g., spironolactone, eplerenone.

General Schematic of Work-Up and Treatment of Pediatric HTN

[Diagram of HTN treatment]

Stage 2 Acute HTN Crisis

Pharmacologic Therapy

<table>
<thead>
<tr>
<th>Line</th>
<th>Drug</th>
<th>Route</th>
<th>Category</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Labetalol</td>
<td>IV</td>
<td>α/β Blocker</td>
<td>0.25-1 mg/kg per dose administered by rapid transfusion</td>
</tr>
<tr>
<td>2nd</td>
<td>Isradipine</td>
<td>IV</td>
<td>CCB</td>
<td>0.1 dose mg/kg per dose</td>
</tr>
<tr>
<td>3rd</td>
<td>Nitrendipine</td>
<td>IV</td>
<td>CCB</td>
<td>0.1-0.3 dose μg/kg per minute</td>
</tr>
<tr>
<td>4th</td>
<td>Enalapril</td>
<td>PO</td>
<td>ACEI</td>
<td>0.05-0.1 mg/kg per hour</td>
</tr>
</tbody>
</table>

[Trachtman 2011]
Prognosis

- There is very little data available on the natural history of primary HTN in children so it is impossible to predict the long-term outcomes of untreated HTN in children and adolescents.
- One small study in Iceland demonstrated a correlation between childhood SBP and the development of coronary artery disease in adulthood.
- LVH occurs in ~33% of children and adolescents with mild, untreated HTN.
- Preventing end organ damage including vascular changes, cardiac damage and renal effects should be the goal of treatment for pediatric hypertensive patients.

References

Trachtman H. Short- and long-term physiologic and pharmacologic control of blood pressure in pediatric patients. Integ Blood Pre ss Contr 2011; 4:35-44.
